
Microservices
the chain of calls and the

radar of freedom
Davide Rossi

Webist 2018

Foreword
This is a position talk that focuses on the impact of recent technical
developments.

I am a research professional but this talk mostly focuses on technical aspects...

...or more precisely on the perception of these aspects more than on the
technical details.

Microservices are hot

[Google trends]

The microservices dilemma
This is from a research professional point of view.

Which is the microservices research space?

What’s difference with respect to other service-oriented architectures (e.g.
E-SOA)? It is more about the product? About the process? About practical
impact?

A lot of researchers squeezed their heads but apparently very little output has
been produced.

Are microservices a topic in computer science research at all? Industry-academia
dichotomy all over again?

Microservices success stories

From hero

To zero

Living the hype
cycle

Microservices have a place
here. Somewhere.

Disillusionment?

What
developers like

about
microservice?

A social media analysis

Freedom?
That’s design space freedom.

Microservices are an architectural style.

An architectural style is about imposing constraints on the design on an
architecture.

Constraints are enforced to improve software qualities: non functional qualities
and internal qualities.

An architecture design space depends on these qualities.

Microservices are different
In all declinations of a SOA services are loosely coupled, re-usable, autonomous,
stateless, discoverable, composable, based on standards.

Microservices are designed to be developed, deployed and scaled
independently.

Enablers: agile software development; virtualization/containers; evolution in data
management.

Microservices pipelines

[Kristijan Arsov]

Microservices are distributed systems
Systems designed on top of a microservices architecture are distributed
systems.

Even through the mist of containers and VMs.

We know something about distributed systems. This knowledge does not
percolate so promptly towards people adopting microservices, though.

One of the things we know if that distributed systems are hard.

Microservices can be complex
The case for Netflix:

Eureka
Ribbon
Hystrix
Zuul
Curator
Astyanax
Conductor
Memcached
…

Which in turn depend upon ZooKeeper, Servo, Cassandra, ...

Dimensions of freedom
Governance

Development

Language (polyglot programming)

Data management (polyglot persistence)

Platform/Infrastructure

Governance
Governance is about policies. Policies are pervasive and can touch almost every
aspect of software development and operations.

Microservices bring the promise of decentralized governance: centralized
governance is perceived as an overhead that should be avoided by supporting
service-specific governance and intra-service contracts (which can be promoted
by using patterns like tolerant reader and consumer-driven contracts).

Development
The microservices development pipeline translates to separate development
projects and it is not unusual to have tenths if not hundreds of microservices in a
single system. That calls for development methods with minimal overhead and
agile programming is undeniably the best option.

So development freedom is about adopting different practices within an agile
context. Most notably these practices could change between the projects of
different microservices within the same application (this is really a sub-category of
governance but since it receive significant interest from the microservices
community it is presented separately).

Language (polyglot programming)
Polyglot programming has always been a strong selling point for microservices
architectures.

Since each microservice is a separate product, it can be developed with the
language perceived as the most fitting to solve the specific problems that
microservice has to address. This could easily result in an application developed
with an array of different languages.

Data management (polyglot persistence)
Just like polyglot programming, polyglot persistence too has always been linked
with microservices.

A basic characteristics in SOA is that services should be autonomous and thus
should take care of their own data. This is reflected in microservices at the
conceptual level, where each microservice defines its own data conceptual model
(typically inspired by the specific domain which the microservice is linked to, a
practice also promoted by domain-driven design with bounded domains) but also
at the implementation level, where it has the opportunity to select the most
appropriate data storage solution.

Platform/Infrastructure
JEE and .NET provide well-defined ecosystems composed by libraries,
frameworks and infrastructure services.

Microservices can choose à la carte: an array of options is available (which is also
possible thanks to the wide diffusion of enterprise-grade open source software).

The radar of freedom

Perception vs reality
Governance: decentralized governance is indeed possible to a certain extent but
several architectural choices have an immediate impact on policies that have to be
enforced on all (or most of the) services in the system.

Development: not every software company has dozens of teams working on the
same system.

Language: the need to share common libraries to assure a predictable behavior
and the need to talk with specific infrastructure services can actually prevent
polyglot programming from happening in practice.

Perception vs reality
Data management: depending on the level of needed consistency strong
constraints can be imposed on data management systems, the options could
result to be much less than expected.

Platform/infrastructure: the decision to embrace a specific event-based
framework rather than a specific message broker should not be made simply
because of a preference in the programming model or languages supported but
first and foremost because of the guarantees that this solution provides in terms of
system qualities.

Let us see that in practice
1. Focus on a recurring problem.

2. Look at the possible solutions.

3. Analyze the solutions wrt quality dimensions.

4. Assess the impact on design space dimensions.

The chain of calls

The Microservices Death Star

The chain of calls describes a set of cascading logical dependencies between
microservices.

This does not necessarily translates into an actual sequence of direct
invocations.

Option 1: actual invocations are performed.

Option 2: the interactions between dependent services are decoupled (usually by
using asynchronous messaging supported by a message broker).

The chain of calls

Quality dimensions
Consistency and availability are the most exemplary contrasting non-functional
requirements that large, multi-user, distributed applications struggle with.

The CAP theorem (Gilbert and Lynch, 2002) states that in a partitionable system
it is not possible to achieve full consistency and maximum availability.

Solutions to the chain of calls
 • CC1. Perform direct invocation

 ◦ CC1.1. Use a choreography-based approach

 ◦ CC1.2. Use an orchestration-based approach

 • CC2. Use messaging

 ◦ CC2.1. Use a choreography-based or an orchestration-based approach

 ◦ CC2.2. Use a DDD-inspired solution and actually avoid chaining
microservices

About the domain-driven design-inspired solution

DDD: command messages are requests targeted to a domain, domain events
signal relevant occurrence in a bounded domain (which usually correspond to a
microservice).

Example: I want the product page to also show stock availability.
The most straightforward solution is to chain the Products microservice and the
Inventory microservice (with or without an orchestrator, using sync or async
messages).
DDD: when a the stock availability of a product changes Inventory raises a domain
event. The microservice that composes the product page information listen to
these events and updates its local copy of the availability.

Direct invocation: availability viewpoint
If the average chain size is N and the average availability of each service is A, the
overall availability of the system cannot be more than NA.

For example, if the average availability for the services is 99.999% (also known as
five-nines, a measure usually perceived as very good for a real-world system) and
the average chain length is 5, the resulting availability will be 99.995%. That
means an increase in downtime from 5 minutes 15 seconds per year to 26
minutes 17 seconds per year.

Direct invocation: availability viewpoint
In IP-based networks a crashed process is indistinguishable from a slow one.

Usual approach: timeouts.

In presence of a chain of calls setting reasonable timeouts is difficult.

Current practice for microservices: short timeouts, retries (when in the presence
of idempotent calls), aggressive restart of erratic/slow services (need to dialog
with monitoring, message routing, and service hosting infrastructure services).

Duration of timeouts, number and frequency of retries, when a service has to be
restarted are all heuristic-based decisions.

Direct invocation: availability viewpoint
Basic mitigations: exponential backoff and back-pressure for retries.

Circuit breaker (Nygard, 2018) is a pattern vastly employed to improve stability
and resiliency in microservices architectures in the presence of direct
service-to-service invocation.

Bulkhead (Nygard, 2018) is a pattern that suggests to partition service instances
into different groups, based on consumer load and availability requirements in
order to avoid the risk for a troubling connection to starve other concurrent
workloads.

Direct invocation: availability viewpoint
It is not reasonable that all microservices independently implement these
mitigations.

Option: libraries (e.g. Netflix’s Hystrix, Twitter’s Finagle).

Option: out-of-process proxy: Sidecar pattern (Burns and Oppenheimer, 2016).
A service mesh is based on this approach.

Use messaging: availability viewpoint
First of all we need a messaging infrastructure.

A more subtle aspect is related to testing: testing an event-driven system, while
perfectly possible, is far from trivial: the test suite for a single service should also
touch aspects related to the handling of events and test dummies, like mockups,
must include also non-directly coupled dependencies like those generating or
consuming events. While there are best practices to deal with these (and other)
problem, testing these systems is difficult and requires specific discipline.

Availability viewpoint - summary
Use mitigation strategies for direct invocations

In-process approach: libraries
Language is constrained
Governance is severely constrained
Platform/Infrastructure is constrained

Out-of-process approach: sidecar/service mesh
Platform/Infrastructure is severely constrained
Governance is constrained

Use messaging
Platform/Infrastructure is severely constrained
Data management is severely constrained

Direct invocation: consistency viewpoint
In general we are dealing with a distributed transaction.

TPC is not an option, microservices-based solutions, for the most part, adopted ad
hoc solutions, also known as feral concurrency control (Bailis at al., 2015).

The use of long running compensating transactions is starting to get traction
(a.k.a. Distributed SAGA).

Long running compensating transactions
Choreography approach: the state of the transaction is a distributed state, in
case of failures its consistency must be ensured (something that can be achieved
using a robust distributed logging infrastructure). This also means that there are
problems with visibility and monitoring.

Orchestration approach: the orchestrator, usually called the coordinator in this
context, should not be a single point of failure and should be highly available.

Use messaging: consistency viewpoint
The data management needs of Web 2.0 companies shifted the focus from SQL
and ACID to NoSQL and BASE (Pritchett, 2008).

With microservices it is usual to look for trade-offs in which a price is paid in terms
of consistency in order to achieve better availability → the raise of eventual
consistency.

From a chain of calls point of view this means that when services reads data they
could be exposed to a soft state (i.e. the value that is read has not still be
reconciled with the last updated value) whereas when services write data,
reconciliation mechanism have to be adopted to guarantee eventual consistency.

Use messaging: consistency viewpoint
To guarantee eventual consistency with DDD-inspired approaches, database
update and the generation of the domain event in the inventory microservice
have to be atomic.

Easier solution: let the local database and the message queue participate in a
multi-party atomic transaction (which is not a distributed one). This, however,
requires that the message broker supports atomic transactions (only a few
do), and the same applies to the database (most NoSQL databases do not).
Other solutions do exist but are complex, brittle, need message deduplication
support from listeners and, of course, still need a transactional database (or a
transactional message queue).

Consistency viewpoint - summary
Reach eventual consistency with DDD-inspired solutions

Platform/Infrastructure is constrained
Data management is severely constrained
Governance is constrained

Reach quasi-atomicity with compensating transactions
Governance is severely constrained
Platform/Infrastructure is constrained

Which one then?

Microservices adoption flowchart
[Stavros Korokithaki]

Take away
The main constraints imposed to the architectural design space come from
required qualities, not from an architectural style.

Microservices allow for mixing different kinds of solutions within the same
system: the degree of freedom in the design space can indeed be larger.

But there is a high price in terms of technical complexity.

And: do not trust (IT) social media.

